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1. Introduction

The attractor mechanism was originally discovered for BPS extremal black holes in N = 2

supergravity theories [1 – 3]. Under the attractor mechanism, the values of moduli scalars

at a BPS extremal black hole horizon are fixed, independently of their values at infinity, in

terms of the electric and magnetic charges carried by the black hole. More recently, begining

with the work of references [4] and [5], the attractor mechanism has been investigated for

extremal black holes in non-supersymmetric theories, as well as for non-BPS extremal

solutions in N ≥ 1 supersymmetric theories.

The methods employed in references [4] and [5] are quite different and offer comple-

mentary insights into the physics of the attractor mechanism. Reference [4] focuses on

the near horizon limit, which is assumed to have geometry AdS2 × SD−2. An “entropy

function” is defined by taking the Legendre transform, with respect to the electric charges,

of the integral of the Lagrangian density over the SD−2. The constant values of the mod-

uli fields, which solve the equations of motion in the near horizon region, can be shown

to be those which extremize this entropy function. These are the attractor values of the

moduli fields. Further, the black hole entropy is given by the value of the entropy function
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at its extremum. The approach of reference [4] is quite general and by design includes

the possibility of higher derivative gravitational interactions. For instance, equality of the

extremum value of the entropy function with the black hole entropy is demonstrated by

showing that it reproduces Wald’s formula [6 – 9] which holds in higher derivative gravity

theories.

In contrast, reference [5] focuses only on Einstein gravity, but obtains very explicit

results that illustrate the attractor mechanism in action. The authors use a combination

of analytic and numerical techniques to follow the radial evolution of the moduli scalars

from their attractor values, at an extremal black hole horizon, out to independent values at

infinity. Although this approach lacks the generality of reference [4], one sees the operation

of the attractor mechanism in a vivid way.

In this paper, we will follow the approach of reference [5] and study the attractor

mechanism with a simple higher derivative gravitational interaction, the Gauss-Bonnet

term, added to the action. We focus on D = 5, the smallest dimension in which the Gauss-

Bonnet interaction is non-trivial. This theory serves as the first example, beyond Einstein

gravity, of a Lovelock gravity theory [10]. Lovelock gravity theories share a number of

important properties with Einstein gravity [10] and have been studied in many contexts

over the years. In particular, vacuum and electrovac black hole solutions have been well

studied, begining with the work of [11 – 13].

One knows from the general results of [4] that the moduli scalars in Gauss-Bonnet

gravity must take values at an extremal black hole horizon that extremize the entropy

function for this theory.1 Our results establish, at least within the particular gauge and

scalar field system we study, that these near horizon attractor values are actually obtained

at the horizon in asymptotically flat, extremal black hole solutions with a range of different

values for the scalars at infinity.2

In section 2 we describe the D = 5 Gauss-Bonnet gravity theory coupled to a system

of gauge and scalar fields that we will be studying. In section 3 we present a set of simple

analytic black hole solutions in which the scalar fields take constant values throughout the

spacetime. The possible constant values are, as in reference [5], the extremal points of a cer-

tain effective potential function that depends on the charges carried by the black hole.3 In

section 4 we numerically construct extremal solutions in a certain single scalar field model,

in which the scalar fields vary between fixed attractor values as the degenerate horizon and

independent values at infinity. These attractor values are again the extremal points of the

effective potential, with the provision that the eigenvalues for small fluctuations about the

extremal point must all be positive for the attractor mechanism to hold. We evaluate the

ADM mass of these spacetimes and show that it is minimized by the extremal solutions of

1The entropy function for Lovelock gravity theories, which includes Gauss-Bonnet gravity, is calculated

explicitly in reference [14] (see also [15]).
2Non-supersymmetric, asymptotically flat extremal black hole solutions in a higher derivative gravity

theory have also been studied in reference [16]. The theory considered in this case is a general R2 grav-

ity theory in D = 4 with a moduli dependent coupling. Black hole solutions manifesting the attractor

phenomenon are implicitly constructed via a series expansion method.
3See also reference [17] for similar results in D = 5 Maxwell-Einstein supergravity.
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section 3 in which the scalars are constant at their attractor values. Finally, in section 5

we numerically construct non-extremal black hole solutions with non-constant values for

the scalar field. We show that, as in the case of Einstein gravity [5, 18], non-extremal

black holes do not exhibit the attractor mechanism, i.e. the value of the scalar field at the

horizon depends on its value at infinity.

2. Gauss-Bonnet gravity

We consider Gauss-Bonnet gravity in five dimensions coupled to N Abelian gauge fields Aa
µ

with a = 1, . . . , N and n massless scalar moduli fields φI , with I = 1, . . . , n. The moduli

scalars have vanishing potential, but couple to the gauge field kinetic terms through the

matrix function fab(φ). The action is then given by

S =
1

κ2

∫

dx5 √−g
[

R + αL (GB) − 2∂µφI∂
µφI − fab(φJ)F a

µνF b µν
]

, (2.1)

with the Gauss-Bonnet term in the Lagrangian given by

L (GB) = R2 − 4RγδR
γδ + RγδλσRγδλσ , (2.2)

The coupling constant α has dimensions (length)2. The equations of motion and further

details of this theory are given in the appendix.

We are interested in extremal black hole solutions of this theory. We will therefore

assume a static, spherically symmetric form for the metric

ds2 = −a 2(r) dt2 +
dr2

a 2(r)
+ b 2(r)dΩ 2

3 , (2.3)

where dΩ2 = γijdxidxj with i, j = 1, 2, 3 represents the round metric on the unit 3-sphere

in a general set of coordinates. We will restrict our attention to black holes that carry only

electric charges for the gauge fields Aa
µ. The equations of motion for the gauge fields may

then be solved by taking the field strengths to be of the form

F a =
fab Qb

b3
dt ∧ dr. (2.4)

Here, the constants Qa are the electric charges and the field dependent tensor fab(φ) is the

inverse of the tensor coupling fab(φ) that appears in the Lagrangian. With this form for

the field strengths, the stress-energy tensor for the gauge fields can be written in terms of

the effective potential

V eff(φ) = f cd(φ)Qc Qd. (2.5)

Furthermore, the effective potential acts as a potential in the equations of motion for the

moduli scalars, which are given by

∂r

(

b3 a2 ∂rφI

)

=
∂IV eff(φ)

2b 3
(2.6)
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It will be important to note that these equations of motion may be solved by constant values

φ̄I of the scalar fields, if these values represent a critical point of the effective potential,

i.e. they satisfy

(∂IV eff)|φ̄ = 0. (2.7)

As in reference [5], we will see below that the critical points φ̄I of the effective potential

represent possible attractor values for the moduli scalars, provided that the matrix of

second derivatives of the effective potential

MIJ = (∂I∂JV eff)|φ̄ (2.8)

has positive eigenvalues.

Given the form of the ansatz for the metric (2.3) and the gauge fields (2.4), the gravi-

tational equations of motion are given by

Grr = (∂rφI)(∂rφ
I) − V eff(φ)

a2 b 6
, Gtt = a4 (∂rφ

I)(∂rφI) +
a2 V eff(φ)

b 6
,

Gij =

(

−b 2a 2(∂rφI)(∂rφ
I) +

V eff(φ)

b 4

)

γij , (2.9)

where the tensor Gµν = Gµν + α G
(GB)
µν combines the Einstein tensor Gµν and its Gauss-

Bonnet counterpart G
(GB)
µν which is given by equation (A.4) in the appendix, where we also

give expressions for the nonzero components of Gµν and G
(GB)
µν in the spherically symmetric

ansatz.

One particular combination of the gravitational field equations will be especially im-

portant in the analysis below. Given the gravitational field equations in (2.9) and the

explicit expressions for Gµν and G
(GB)
µν in the appendix, one can compute the quantity

grrGrr − gttGtt in two ways. Setting these equal then gives the equation

− 3
a2

b3

[

b2 + 4α
(

1 − a 2b ′ 2
)]

b′′ = 2 a2 (∂rφ
I)∂rφI , (2.10)

which implies that b′′ = 0 if the scalar fields are constant. Note that in the absence of

the Gauss-Bonnet term, i.e. with α = 0, equation (2.10) implies that b′′ ≤ 0, which is an

important ingredient in the ‘c-theorem’ of reference [19].

3. Double-extreme solutions

Extremal black hole solutions in which the scalar fields take constant values are some-

times called double-extreme solutions. In this section, we investigate such double-extreme

solutions in the Gauss-Bonnet gravity theory of section 2. As noted above, the constant

values φ̄I for the scalar fields must be critical points of the effective potential, in order that

equation (2.6) be satisfied. A second observation is that, with constant values of the scalar

fields, equation (2.10) implies that b′′ = 0.
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3.1 Robinson-Bertotti solutions

We first consider solutions of the Robinson-Bertotti form. The metric is taken to be

AdS2 × S3, which we write as

ds 2 = − x 2

R 2
dt 2 +

R 2

x 2
dx2 + b 2

H dΩ2
3 . (3.1)

where R and bH are constants. This will be the near horizon form of the metric, both for

the double-extreme black hole solutions which we study in this section, and the solutions

with non-constant scalars which we subsequently study via numerical methods.

First note that since the metric function b(r) in the Robinson-Bertotti metric is con-

stant, we have b′′ = 0. Equation (2.10) then implies that the scalar fields φI must be con-

stant. The constant values φ̄I of the scalar fields must in turn satisfy equation (2.7). Let

V̄ be the constant value of the effective potential throughout the spacetime, V̄ ≡ V eff(φ̄).

One can then show that the remaining field equations imply that the S3 and AdS2 radii

are given according to

b4
H =

1

3
V̄ , R2 =

1

4
b2
H + α (3.2)

This differs from the Einstein case only in the contribution of the Gauss-Bonnet coupling

constant α to the AdS2 radius.

3.2 Extremal black hole solutions

We now consider double extreme black hole solutions.4 In order to satisfy b′′ = 0 with

asymptotically flat boundary conditions, we may set b(r) = r without any loss of generality.

Plugging this into the second equation in (2.9) yields an equation for a(r)

a ′
[

3 a r2 + 12 αa
(

1 − a 2
)]

+ 3r a 2 = 3r − V̄

r3
. (3.3)

We can integrate this equation to obtain the general solution

a2 = 1 +
r2

4α
±

√

(

1 +
r2

4α

)2

− 1

2αr2

(

r4 − 2Mr2 +
V̄

3

)

, (3.4)

where M is a constant of integration. One can check that the remaining gravitational

equations of motion are also with a(r) having this form.

This general solution describes both non-extremal and extremal black holes, as well

as naked singularities. Moreover, it is well known that Gauss-Bonnet gravity generally

has two distinct constant curvature solutions. If the cosmological constant vanishes, as

it does in the Lagrangian (2.1), then flat space is always one of these solutions. For

Gauss-Bonnet coupling α > 0 (α < 0) the second constant curvature solution has negative

(positive) curvature. We need to sort through these various possibilities to identify the

asymptotically flat, extremal black hole solutions in (3.4).

4Because the scalar fields are constant, the black hole solutions we find here are equivalent to those of

Gauss-Bonnet gravity coupled to a single U(1) gauge field given in references [20, 21], with the effective

electric charge Q 2
∝ V̄ .
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Taking the large r limit, we see that for α > 0 the + branch of (3.4) is asymptotically

anti-deSitter, while with α < 0 the − branch is asymptotically deSitter, in accordance with

the remarks above. For asymptotically flat solutions, we must then take the − (+) branch

of (3.4) for α > 0 (α < 0). Taking the large r limit in these cases leads to

a2 ≃ 1 − 2
M + α

r2
+

V̄

3r4
+ . . . . (3.5)

Given the normalization of the Einstein term in the Lagrangian (2.1), the ADM mass can be

read off from the expansion gtt ≃ −1+MADM/6π2r2 + . . .. Comparing with equation (3.5)

we see that the ADM mass of our solutions is given by MADM = 12π2(M + α).

We must now analyze the horizon structure of the asymptotically flat solutions. For

Gauss-Bonnet coupling α > 0, taking the + branch in (3.4), we see that a2 = 0 when

the second term under the square root vanishes. Horizons then occur at the roots of the

polynomial r4 − 2Mr2 + V̄ /3. These roots are given by

r2
± = M ±

√

M2 − V̄ /3 (3.6)

and we see in turn that the solutions represent black holes for M ≥
√

V̄ /3, with the

extremality condition being M =
√

V̄ /3. Keeping track of the signs carefully, one finds

that the horizon radii are the same for α < 0 with one proviso. In order for the metric

function a2 to vanish for α negative, the quantity 1+r2/4α must be negative at the horizon.

For the extremal case of interest to us, this imposes a lower bound on the Gauss-Bonnet

coupling constant

α ≥ −1

4

√

V̄ /3. (3.7)

Only for α satisfying this bound do we find double extremal black hole solutions.5

3.3 Near horizon limit

Let us now take the near horizon limit of the double extreme solutions and check that it

coincides with the Robinson-Bertotti solutions found at the beginning of the section. In

the extremal limit we find that the outer horizon radius r+ in equation (3.6) is given by

r4
+ = M2 = V̄ /3. In terms of the parameter bH of the Robinson-Bertotti solutions, we

then have r+ = bH . The near horizon limit of the metric function a2 in (3.4) in this case

is found to be

a2 ≃ (r − bH)2

α + b2
H/4

. (3.8)

Setting x = r − bH and R2 = α + b2
H/4, we see that the near horizon limit of the double

extreme black hole solutions indeed coincides with the Robinson-Bertotti metric (3.1).

4. Attractor mechanism

In the last section, we found extremal black hole solutions with constant scalars in our

theory. As in Einstein gravity [5], the constant values taken by the scalars φ̄I must represent

5Extremal black hole solutions in Gauss-Bonnet gravity are also discussed in references [22, 23].
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a critical point of the effective potential V eff. In this section we will construct extremal

black hole solutions with non-constant scalars. These will have the same near horizon limit

as the solutions of section 3. However, we will see the asymptotic values of the scalar fields

may be varied freely. The existence of these solutions in Gauss-Bonnet gravity establishes

the operation of the attractor mechanism in this theory.

4.1 A specific model

In order to find extremal black hole solutions with non-constant scalars, we must further

specify the theory by choosing definite numbers of gauge and scalar fields and the form of

the couplings between them.

Following reference [5], we consider a simple example that consists of one scalar field

φ coupled to two U(1) gauge fields Aa
µ with a = 1, 2. The couplings of the scalar field to

the gauge fields is taken to be

fab(φ) = e−αaφδab . (4.1)

It is then straightforward to compute the effective potential for this model, which is given

by

Veff(φ) = eα1φQ2
1 + eα2φQ2

2 . (4.2)

In order that a critical point of V eff should exist, the constants α1 and α2 must have

opposite signs. The critical value φ̄ of the scalar field is then given specified by

eφ̄ =

(−α2Q
2
2

α1Q
2
1

)1/(α1−α2)

. (4.3)

The matrix of second derivatives of the effective potential at the critical point (2.8) is in

the present case simply a number, and is given by M = −2α1α2. Given that α1 and α2

are assumed to have opposite signs, we see that M > 0.

4.2 Perturbative near horizon analysis

In their study of the attractor mechanism in Einstein gravity, the authors of [5] were

able to follow two routes towards finding solutions with non-constant scalars. First, they

analytically studied solutions that are perturbatively close to double extreme solutions. In

this way, solutions were found in which the asymptotic values of the scalar fields differ by

small amounts from their attractor values at the horizon. Reference [5] also constructs

solutions to the exact equations of motion using numerical techniques. These solutions

display the attractor behavior over a wide range of asymptotic values for the scalar field.

In the case of Gauss-Bonnet gravity, the linearized equations for the scalar field in

the background specified by the metric function (3.4) cannot be solved in closed form.6

Therefore, to demonstrate the attractor mechanism we will turn very shortly to numerical

techniques. However, in order to appropriately fix initial conditions for the scalar field φ

6Note that corrections to the metric functions would not enter until second order in perturbation theory,

because of the quadratic nature of the scalar kinetic term and the fact that we are expanding about a

critical point of V eff.
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near the horizon in our numerical work, we first consider the linearized equation for φ in

this region, which does yield a simple closed form solution.

Although for our numerical work below we will specialize to the single scalar model

described above, this near horizon analysis may be carried through in the general case. Let

φ̄I be the critical point values of the scalar fields in a double extreme black hole solution.

We consider perturbations

φI(r) = φ̄I + ǫ φI 1(r) , (4.4)

with ǫ ≪ 1. In order to simplify the analysis, we assume that the fields φ̄I are eigenvectors

of the matrix MIJ with corresponding eigenvalues β2
I . In the near horizon regime, we have

b(r) = bH and a(r)2 = (r − bH)2/R2. Setting x = R − bH as in (3.1), the linearized scalar

field equations are given by

x2∂2
xφI 1 + 2x∂xφI 1 −

β 2
I R2 φI 1

2 b6
H

= 0 . (4.5)

The solutions of this equation are given by

φI 1 = CI

(

x

bH

)σ±

I

(4.6)

where σ±
I =

(

−1 ±
√

1 + 2β 2
I R2/ b6

H

)

/2 and the CI are arbitrary constants. At this

perturbative level, the attractor mechanism works for a given scalar field φI , only if the

perturbation φI 1 vanishes at the horizon x = 0. We see that this will be the case if the

exponent in (4.6) is postive [5]. The exponent σ−
I is always negative and leads to scalar

perturbations that diverge at x = 0. If β 2
I > 0, then the exponent γI ≡ σ+

I is positive and

perturbations with this exponent exhibit the attractor mechanism. However, if β 2
I < 0

then no perturbations exhibiting the attractor behavior exist. The case β2
I = 0 is discussed

in specific class of examples in reference [24]. In this case, one must go to higher order in

perturbation theory to determine the nature of the scalar perturbations, and whether they

exhibit the attractor behavior. We will assume in the following that all the eigenvalues β2
I

of the matrix MIJ are positive.

In order to establish initial conditions for all the relevant degrees of freedom, we also

consider the perturbation equations for the metric functions a2 and b2 in the near horizon

regime. As noted above, these begin at second order in perturbation theory, and hence we

expand a(x) = ā(r)+ ǫ2 a2(r) and b(x) = b̄(r)+ ǫ2 b2(r). From equation (2.10) we can then

obtain the equation for b2(x)

∂2
xb2 =

− b3
H

∑

I (∂xφI 1)
2

6R 2
(4.7)

which after insertion of the solution (4.6) for the first order perturbations to the scalar

fields can be integrated to give

b2(x) = −
∑

I

C2
I b3

H (x/bH)2 γI

12γI (2γI − 1)R 2
. (4.8)
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We see that b2(x) vanishes at the horizon x = 0, and hence the metric function b approaches

its attractor value bH at the horizon.

Now one can use the third equation in (2.9) to solve for the purturbation a2(x) near

the horizon and get

∂2
x

(

ā a2 +
bH ā2

4R2
b2

)

= − b2
H

4R2

[

ā2 ∂2
xb2

bH
+

4 b2 V̄

b7
H

+
∑

I

(

ā2(∂xφI 1)
2 +

β2
I φ2

I 1

2 b6
H

)

]

. (4.9)

The integration of this equation gives

ā a2 +
bH ā2

4R2
b2 = −

∑

I

b2
H C2

I

4R2(2γI + 1)(2γI + 2)b2γI

H

×

×
[

(1 − b2
H

6R2
)
γ2

I

R2
− V̄

3 b4
H γI(2γI − 1)R2

+
β2

I

2 b6
H

]

x2γI+2 , (4.10)

from which we see that the perturbation to a(r) also vanishes as x → 0, consistent with

the attractor phenomenon.

4.3 Numerical solutions

We now return to the single scalar field model and carry out a numerical analysis of solutions

to the full nonlinear field equations. From the ij components of the field equations in (2.9)

together with (2.10), we obtain the radial evolution equations

φ ′′(r) = −(3
b ′

b
+ 2

a ′

a
)φ ′ +

∂φVeff(φ)

2 a 2 b 6

b ′′(r) =
−2 b 3

3

φ ′2

b 2 + 4α(1 − a2 b ′ 2)

a ′′(r) =
1

a [b 2 + 4α(1 − a 2b ′ 2)]

[

1 − a 2 b ′ 2 − b 2 a ′ 2 − 2 a b
(

2 a ′ b ′ + a b ′′
)

− 4α a ′ 2
(

1 − 3 a 2b ′ 2
)

+ 8α a 3 a ′ b ′ b ′′ − b 2 a 2 (∂rφ) 2 +
Veff(φ)

b 4

]

. (4.11)

We integrate these equations numerically using the Rung-Kutta method. As discussed

in [5], one cannot impose boundary conditions near r = ∞, because the growing mode of

the scalar field in (4.6) will lead to divergent results near the horizon. Instead, we integrate

outward in radius. We start the numerical integration at an initial point ri close to the

horizon and use the perturbative near horizon results in (4.6), (4.8) and (4.10) to fix initial

conditions there. We denote the proximity to the horizon by the parameter

δr =
ri − bH

ri
. (4.12)

With a single scalar field, the strength of the perturbation near the horizon is determined

by the choice of the single constant C in equation (4.6).

As we integrate the system of equations, we check that the numerical solution satisfies

the constraint given by the rr component of the field equations (2.9) which contains no

– 9 –
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second order radial derivatives

a ′(r) = a b 3

[

3

a 2 b 2

(

1 − a 2 b ′ 2
)

+
(

φ ′
)2 − Veff(φ)

a 2 b 6

]

/3 b ′
[

b 2 + 4α (1 − a2 b ′ 2)
]

. (4.13)

We find that in all cases the constraint is indeed satisfied to appropriate numerical accuracy.

As a further check, we have also numerically integrated the simpler lowest order per-

turbative equations for φ1(r), a2(r) and b 2(r) expanded about the full, asymptotically flat,

double extreme black hole background. These perturbative results should be accurate for

sufficiently small values of the parameter C. We can then check that our results for inte-

grating the full nonlinear field equation match up with the perturbative results for small C.

Our numerical results are displayed in figure 1. The vertical line in the plots denotes the

horizon radius bH . The plot of φ(r) clearly shows the attractor behavior. By construction,

the plots start near the horizon with small deviations determined by the value of C from the

attractor value φ̄, which is indicated by the horizontal line on the plot. We see that for large

radius, the scalar field φ approaches constant values that can differ quite significantly from

its attractor value near the horizon. The φ plot also includes for comparison the results of

integrating the first order perturbative equation for φ. We see that these results have the

same qualitative features as the results from the full noninear equations and that the two

sets of results have good quantitative agreement at the smallest value of C displayed.

The plot of the metric functions a(r) and b(r) have forms consistent with asymptotic

flatness, with a(r) going to a constant and b(r) growing linearly at large radius. We will

see below that their detailed asymptotic behavior gives asymptotically flat solutions with

finite ADM mass.

4.4 Black hole mass

In this section we evaluate the ADM mass for our numerical solutions. It is a basic feature

of the supersymmetric attractor mechanism that the ADM mass is minimized, for fixed

values of the electromagnetic charges carried by the black hole, when the scalar fields take

their attractor values throughout the spacetime [3]. It was shown in [5] that this continues

to be the case for nonsupersymmetric attractors in 4-dimensional Einstein gravity. In the

following we show that this behaviour persists, at least in our 5-dimensional example, when

the Gauss-Bonnet interaction term is added to the gravitational Lagrangian.

As noted above, our numerical results show that at large radius b(r) increases linearly

with radius and a(r) approaches a constant value. If we assume that the approach of a(r)

to its asymptotic value near infinity is power law with some exponent, then for large r we

have

b(r) = f r , a 2(r) = a 2
∞ − MADM

6π 2 rn
, (4.14)

where f , a∞ and n are constants. For an asymptotically flat spacetime in 5-dimensions,

we should have n = 2, and MADM in (4.14) would then be the properly normalized ADM

mass. Rescaling the time coordinate so that gtt approaches −1 at infinity, the asymptotic

form of the metric is then

ds2 = −
(

1 − MADM f n

6π 2 a 2
∞y n

)

dt2 +
d y 2

a2
∞ f2

(

1 − MADM f n

6 π 2 a 2
∞y n

) + y 2dΩ 2
3 . (4.15)
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Figure 1: This figure displays the results of numerically integrating the field equations with

C = {5.0, 10, 15}. The parameters of the scalar field model are taken to be α = 1.0, Q1 = 1/
√

2

and Q2 =
√

2 , α1 = −α2 = 2.0, which gives bH = 0.904 and φ̄ = 0.347. The numerical integrations

are started at δr = 0.01. In the plot of φ, the dark lines are the result of integrating the full

nonlinear field equations, while the lighter lines show the first order perturbative results. We see

that these results agree well at the smallest value of C displayed. The graphs for a and b show that

the exact solutions are singularity free and asymptotically flat.

where y = fr. It is straightforward to check that the constants f and a∞ satisfy the

relation fa∞ = 1 in our numerical solutions. In order to check that n = 2 in our solutions

and to determine the value of MADM , we made a log vs. log plot of −(a2 − a2
∞) versus y.

Via the relation

log
(

a 2
∞ − a 2

)

= log

(

MADM f n

6π 2

)

− n log (y) , (4.16)

we see that for power law falloff of a(r) to its asymptotic value this plot should approach

a straightline with slope −n. In this manner, we determined that n = 2 in our numerical

solutions to good accuracy and obtained values of MADM over a range of values of C.

Figure 2 shows plots of MADM with varying asymptotic values for φ for α = 0 (i.e.

pure Einstein gravity) and α = 1. We see that the results are qualitatively similar for the

two values of α and that in both cases the mass is minimized when the scalar field takes

– 11 –
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Figure 2: The black hole mass MADM versus the asymptotic value of the scalar field φ∞ for α = 0

and α = 1.0. We chose charges Q1 = 1/
√

2 and Q2 =
√

2 , α1 = −α2 = 2.0 and δr = 0.01. Plots

show that mass increases with φ∞. The minimum value of mass is that of the double-extreme black

hole obtained by setting φ∞ equal to its critical value at the horizon.

its attractor value φ̄ throughout the spacetime.

5. Non-extremal black holes

Finally, we consider nonextremal black hole solutions. We saw in section 3 that nonextremal

solutions exist with the scaler fields fixed at a critical point of Veff(φ). The metric functions

are given by

a 2(r) = 1 +
r 2

4α
−

√

(

1 +
r 2

4α

)2

−
(

r 2 − r 2
+

) (

r 2 − r 2
−

)

2α r2
, b(r) = r , (5.1)

where r± are the inner and outer horizon radii with

r2
± = M ±

√

M 2 − Veff(φi0)

3
. (5.2)

We want to ask whether there exist nonextremal attractor solutions in which the scalar

fields vary between their attractor values at the outer horizon and independent values at

infinity? In the Einstein case [5, 18] such solutions do not exist, and we expect to find

similar results after adding the Gauss-Bonnet interaction. We address this question both

analytically, by lookiing at perturbations to the scalar field in the near horizon region, and

numerically by looking at solutions to the full nonlinear field equations.

We give the perturbative results first. Near the outer horizon the leading order behavior

of the metric functions expanded in terms of r − r+ is given by

a 2(r) ≃ ρ(r+, r−)(r − r+) b(r) ≃ r+ (5.3)

where ρ(r+, r−) = 2(r 2
+ − r 2

−)/(4α r+ + r 3
+). The first order perturbative equation for the

scalar field φ in the near horizon region is then given by

(r − r+)φi1
′′ + φi1

′ − β2

2 r 6
+ ρ

φi 1 = 0 , (5.4)
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Figure 3: The non-extremal black hole . We choose α = 1.0 M = 1.0, charges Qe1 = 1/
√

2 and

Qe2 =
√

2 , α1 = −α2 = 2.0 and δr = 0.01. Plot shows that the non-extremal solution does not

exhibit the attractor mechanism. The scalar field is drawn to different values at the horizon for

different values at infinity.

where β 2 = ∂i∂jVeff(φi0). The solutions for linearized perturbations of the scalar field are

then given by

φ1(r) = C I0

[

β

r 3
+

√

2(r − r+)

ρ

]

+ D K0

[

β

r 3
+

√

2(r − r+)

ρ

]

, (5.5)

where I0 and K0 are the modified Bessel’s functions of the first and second kind respectively.

Since K0 is singular at r = r+ we set D = 0. However, we also have I0(x = 0) 6= 0. small

perturbations to the scalar field therefore necessarily modify its value at the horizon, and

we see that the attractor mechanism no longer holds for nonextremal black hole horizons.

Figure 3 displays our numerical results for nonextremal solutions to the full nonlinear field

equations for different values of the parameter C. The fact that the values for φ at the

horizon differ from the attractor values agrees with the result of the perturbative analysis

and shows that the near horizon results extend to nonextremal asymptotically flat solutions.
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A. Details of the gauge and scalar field theory coupled to Gauss-Bonnet

gravity

In this appendix, we present further details of the formalism of section 2. The Lagrangian

is given in equations (2.1) and (2.2). The equations of motion for the metric, gauge and
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moduli fields are given by

Gµν = 2(∂µφI)∂νφI−gµν(∂αφI)∂
αφI+fab(φ)

[

2F a
µλF b λ

ν − 1

2
gµνF a

µνF b µν

]

, (A.1)

1√−g
∂u(

√−g∂µφI) =
1

4
∂I(fab)F

a
µνF b µν , (A.2)

∂µ(
√−gfabF

b µν) = 0 , (A.3)

with Gµν = Gµν +α G
(GB)
µν , where Gµν is the Einstein tensor and G

(GB)
µν is its Gauss-Bonnet

counterpart given by

G (GB)
µν = 2 (RµσκτR σκτ

ν − 2RµρνσRρσ − 2RµσRσ
ν + RRµν) −

1

2
gµνL (GB) . (A.4)

The nonzero components of the Riemann tensor for the spherically symmetric metric (2.3)

are given by

Rrtr
t = −

(

a′′

a
+

a′ 2

a2

)

, Rrir
j = −

(

b′′

b
+

a′b′

ab

)

δj
i , (A.5)

Rtit
j = a4

(

a′b′

ab

)

δj
i , Rijk

l = (1 − a2b′ 2)(γikγj
l − γjkγi

l) (A.6)

The nonzero components of the Einstein tensor Gµν and its Gauss-Bonnet counterpart

G
(GB)
µν are given by

Gtt =
3a2

b2
(1 − a2b′ 2) − 3a4

(

b′′

b
+

b′ 2

b2

)

, Grr = −3
1

a2b2
(1 − a2b′ 2) + 3

a′b′

ab
, (A.7)

Gij =

(

−(1 − a2b′ 2) + b2 a2

(

a′′

a
+

a′ 2

a2

)

+ 2a2b2

(

b′′

b
+ 2

a′b′

ab

))

γij , (A.8)

while those of its Gauss-Bonnet counterpart are given by

G
(GB)
tt = −12

a4

b2
(1 − a2b′ 2)

(

b′′

b
+

a′b′

ab

)

, G (GB)
rr = 12

1

b2
(1 − a2b′ 2)

(

a′b′

ab

)

,(A.9)

G
(GB)
ij = 4a2

{

(1 − a2b′ 2)

(

a′′

a
+

a′ 2

a2

)

− 2a2b2

(

a′b′

ab

)(

b′′

b
+

a′b′

ab

)}

γij . (A.10)
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